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Abstract—The issues of modeling objects and systems based on the graphical representation
of finite state machines using algebraic methods are considered. The problem of finite state
machines synthesis based on the construction of the algebra of their graphoids is solved. With
this aim existing operations on finite state machines are transferred to their graphoids. Subject
to additional requirements, that may emerge during the analysis of the subject area new opera-
tions are introduced. This defines the algebra of finite state machines graphoids, which enables
the synthesis of graphoids for finite state machines models using the algorithm proposed by
the authors. Statements confirming the correctness of the algorithm are proven. A numerical
example of the finite state machines model graphoid synthesis for the joint actions of functional
groups in an emergency area.
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1. INTRODUCTION

An effective tool for modeling the dynamics of object and system functioning in various sub-
ject areas is finite automata [1]. However, as the complexity of the modeled objects and systems
increases, the size of the input, output, and state alphabets of the automaton grows significantly.
This substantially complicates the modeling process, makes the models excessively cumbersome,
and hinders the interpretation of the modeling results. In this case, an effective approach is the
use of a systemic methodology, according to which the object or system is initially decomposed
into components, automata models for individual components are developed, and a general model
is synthesized [2, 3]. The implementation of each of the aforementioned stages largely depends on
the specific characteristics of the subject area of the modeled objects or systems. The most chal-
lenging stage is the synthesis of the general model, as it has the greatest impact on its adequacy.
For instance, in [4, 5], automata theory methods were used to model the behavior of digital pro-
duction twins based on automata algebra, which included not only well-known operations but also
operations introduced by the authors to account for the peculiarities of the modeled object. Other
examples of introducing domain-specific operations on automata and utilizing automata algebra
can be found in [6–8]. Another challenge arising during the synthesis of automata models is the
presence of significant constraints on the selection of possible components for the general model.
If the component models must correspond to predefined objects or systems, specific requirements
may be imposed on the synthesis process of the general model. These requirements include the
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ALGEBRAIC METHODS OF THE SYNTHESIS OF MODELS 87

necessity to eliminate invalid combinations of states in the components of the general model. An
example of this is the task of modeling the joint actions of several functional groups involved in
responding to an emergency situation [9, 10]. Constraints may arise, for instance, from the need
to prevent conflicts between functional groups or to account for synergistic effects during their
coordinated actions [11]. Automata that model the functioning of these groups serve as compo-
nents of the general model for the emergency response process. It should be noted that the set of
states of the components of the general model is often fully known. In this case, the automaton
is represented as a labeled graph (a graphoid), where the vertices correspond to states, the edges
represent transitions between states, and the edge weights describe the automaton’s responses to
various input symbols. This circumstance enables the synthesis of the graphoid of the general
model by combining the graphoids of the automata models of its components. The solution to
this problem can be achieved using algebraic methods. In [12, 13], the concept of an algebra of
finite deterministic automata was introduced based on a set of composition operations, which are
also applicable to automata graphoids. In particular, necessary and sufficient conditions for the
decomposition of an automaton into a network of component automata were established using the
introduced operations and by solving automaton equations through a specially defined language
of paired algebras. The approaches used are naturally applicable to automata graphoids, whose
representation is simply augmented with descriptions of the corresponding automata. However, in
some subject areas, the solution obtained using the approach described in these works may fail
to produce meaningful results because it does not account for potential constraints on the joint
functioning of the components. In this regard, the task of developing a universal approach to syn-
thesizing the graphoid of the general model, which takes into account the constraints on the joint
functioning of the modeled objects or systems, is particularly relevant. In this work, this problem
is addressed through the use of algebraic methods, and the correctness of the proposed approach
is also substantiated.

2. THE ALGEBRA OF FINITE STATE MACHINES GRAPHOIDS

By the algebra A = 〈N ,S〉, according to [14], we mean the set N along with the operations
defined on it.

S = {f11, f12, . . . , f1n1 , f21, f22, . . . , f2n2 , . . . , fm1, fm2, . . . , fmnm},
where N is the carrier, and S is the signature of the algebra (fkl is the lth k-ary operation).

A graphoid G of a finite deterministic non-initial abstract Moore automaton A is a quadruple [15]
(Q,F,X, Y ), where Q is the set of numbered vertices corresponding to the states of automaton A;
F is the operator describing weighted edges, i.e., transitions between states and their corresponding
output symbols depending on the input symbols; X is the input alphabet of automaton A; Y is
the output alphabet of automaton A.

The notation A〈G will be used when automaton A corresponds to graphoid G.

We will now provide descriptions of operator F that are convenient for further use.

Expression

F x/yqi = qis(x/y).

It means that if the automaton is in a state corresponding to the vertex of the graphoid qi and the
input symbol x ∈ X, is received, the automaton will transition to the state corresponding to the
vertex of the graphoid qis and an output symbol y ∈ Y will be generated.

Denote

Fqi =
⋃
x∈X
y∈Y

{
F x/yqi

}
.
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In these notations, the result of the operation of the operator F can be described as{
Fqi =

{
qi1(xj1/yk1), . . . , qil(xjl/ykl), . . . , qini (xjni/ykni )

}
, i = 1, |Q|

}
.

It is assumed that in general,
{
xj1 , . . . , xjni

}
⊆ X, i.e., the automaton can be partial.

The operator F can be represented as a symbolic matrix, where the elements are pairs x/y. The
algebra of such matrices described in [3] simplifies the process of developing numerical methods for
operating with graphoids. However, this requires justification for the correctness of the operations
used.

The introduction of the concept of the algebra of automata graphoids, where the carrier N is
some set of graphoids G0, allows formalizing the procedure for synthesizing the graphoid of the
general model of objects or systems, whose automata models are described by graphoids contained
in the set G0, using various operations.

Let us now turn to the description and justification of the correctness of these operations.

3. ALGEBRA OF FINITE STATE MACHINE’S GRAPHOIDS OPERATIONS

Define the operation × on finite non-empty pairwise disjoint sets M1 =
{
m1

1, . . . ,m
1
|M1|

}
, . . . ,

Mn =
{
mn

1 , . . . ,m
n
|Mn|

}
:

M1 × . . .×Mn =
{{

m1
i1 , . . . ,m

n
in

}
|i1 = 1, |M1|, . . . , in = 1, |Mn|

}
.

In this case × is not the Cartesian product because a result doesn’t depend on order of operation.
It enables to provide the commutativity of operations on of finite state machine’s graphoids.

Suppose G1, G2 ∈ G0 — graphoids

G1 = (QG1 , FG1 ,XG1 , YG1); (1)

G2 = (QG2 , FG2 ,XG2 , YG2). (2)

If graphoids (1) and (2) satisfy the conditions

YG1 ∩XG2 = ∅; (3)

YG2 ∩XG1 = ∅, (4)

Π = G1 ×G2 = (QΠ, FΠ,XΠ, YΠ),

then qΠ ∈ QΠ will be define like qΠ = {qG1 , qG2} and QΠ, FΠ,XΠ, YΠ will be set by equation:

QΠ = QG1 ×QG2 ;

FΠqΠ = FG1qG1 × FG2qG2 ;

XΠ = XG1 ×XG2 ;

YΠ = YG1 × YG2 .

The graphoid Π corresponds to the parallel operation of automata described by graphoids G1

and G2, with synchronized state transitions.

If graphoids (1) and (2) satisfy the condition

XG1 ∩XG2 = ∅, (5)

then the + of graphoids (1) and (2) is defined as the graphoid

Σ = G1 +G2 = (QΣ, FΣ,XΣ, YΣ),
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where qΣ ∈ QΣ is defined as qΣ = {qG1 , qG2}, and QΣ, FΣ,XΣ, YΣ are determined by the following
formulas

QΣ = QG1 ×QG2 ;

FΣqΣ =
(
FG1qG1 × {qG2}

)
∪
(
{qG1} × FG2qG2

)
;

XΣ = XG1 ∪XG2 ;

YΣ = YG1 ∪ YG2 .

The graphoid Σ corresponds to the parallel operation of automata described by graphoids G1

and G2, with asynchronous state transitions.

Condition (5) eliminates the possibility of ambiguity during state transitions after performing
the + operation, i.e., it prevents the emergence of a nondeterministic automaton.

It should be noted that from the definition of the × and + operations for graphoids (1) and (2),
it follows that

QG1×G2 = QG1+G2 . (6)

Thus, the algebra A1 = 〈G1,S1〉, where S1 = {×,+} is described and possesses the following
properties:

(G1 ×G2)×G3 = G1 × (G2 ×G3) ;

G1 ×G2 = G2 ×G1;

(G1 +G2) +G3 = G1 + (G2 +G3) ;

G1 +G2 = G2 +G1.

Consequently, the algebra A1 is a commutative semigroup with respect to each operation in the
signature S1.

4. THE COMPOSITION OF GRAPHOIDS

When simulating real systems, it is necessary to take into account the characteristics of the
subject area, which lead to additional requirements for the synthesis of automatic models, which in
turn imposes some restrictions on the operations on their graphs. The most common requirements
are:

1) changing the state of one object or system can trigger a change in the state of another object
or system;

2) an object or system obtained by performing operations may contain invalid states.

In this connection, there is a need to extend the S1 signal of algebra A1 by introducing operations
that allow taking into account the described features.

The first feature is implemented by introducing the concept “state-trigger,” which assumes that
the transition of one automaton into this state initiates the transition of another automaton to a
certain specified state depending on its current state, i.e. at least one of the conditions (3) or (4)
is not met. Consider the process of operation of the automata, which are described by graphs (1)
and (2), in this case.

If the vertex qiG1
corresponds to the state-trigger of A1〈G1, automaton, which initiates state

change in A2〈G2 automaton, then for convenience of further description we will designate this
vertex as TG2 qiG1

.

Let the A1〈G1 have a trigger state corresponding to the vertex of TG2 qiG1
, and in this finite state

machine corresponds to the output character ykG1
. This symbol simultaneously serves as an input

symbol for the automaton A2〈G2 and initiates a state transition in it as follows: if A2〈G2 was in a
certain state corresponding to the vertex qsG2

, and the set of its input symbols that trigger a state

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 1 2025



90 MENSHIKH, NIKITENKO

1 2
1 1,G Gq q

1 2
2 2,G Gq q

1 2
2 3,G Gq q

1 1 1 2
1 1 1 3, / ,G G G Gx y y y

}

{ { }}

1 1 1 2
1 1 1 2, / ,G G G Gx y y y{ {}

{ }

{ }

{ }

Fig. 1. Graphoid of the sub-automaton of automaton A1,2〈K.

transition includes ykG1
, then A2〈G2 transitions from the state corresponding to the vertex qsG2

a

new state based on the input symbol ykG1
.

It is also possible that the automaton A2〈G2 initiates state transitions in the automaton A1〈G1,
i.e., A2〈G2 contains a trigger state corresponding to the vertex TG1 qiG2

.

Thus, there arises the need to describe a graphoid that represents the joint operation of two
automatons, at least one of which contains a trigger state that influences the operation of the other.

If for graphoids (1) and (2) at least one of the conditions (3) or (4) is not satisfied, the composition
◦ of the graphoids is called a graphoid.

K = G1 ◦G2 = (QK , FK ,XK , YK),

if QK , FK ,XK , YK satisfy the following conditions:

QK = QG1 ×QG2 ;

FKqK =
⋃

t∈YG2
l∈YG1

F
t/l
G1

qG1 × F
l/t
G2

qG2 ;

XK = XG1 ×XG2 ;

YK = YG1 × YG2 ,

where F
t/l
G1

qG1 is the transition mapping of the automaton from the state corresponding to the
vertex qG1 of graphoid G1 when its input symbol t ∈ XG1 ∩ YG2 appears, resulting in the output
symbol l ∈ YG1 ,

Similarly, F
l/t
G2

qG2 is the transition mapping of the automaton from the state corresponding
to the vertex qG2 of graphoid G2, when its input symbol l ∈ XG2 ∩ YG1 appears, resulting in the
output symbol t ∈ YG2 .

It is worth noting that from the definition of the operations ◦, × and + for graphoids (1) and (2),
it follows that:

QG1◦G2 = QG1×G2 = QG1+G2 . (7)

Proposition 1. Let the graphoids (1) and (2) correspond to deterministic automata A1 and A2,
and do not satisfy at least one of the conditions (3) or (4). Then, K = G1 ◦G2 is a graphoid of a
deterministic automaton.

Proof. Assume that the automaton A1,2〈K is nondeterministic. Without loss of generality, we
can assume that it contains a subautomaton whose graphoid is shown in Fig. 1, where y1G1

= x1G2

appears.
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Fig. 2. (a) Graphoid of the sub-automaton A1, (b) graphoid of the sub-automaton A2.

Then, in automata A1 and A2, there will be subautomata whose graphoids are shown in Fig. 2.

Therefore, in this case, automaton A2 would be nondeterministic, which contradicts the condi-
tion of the theorem.

Note that due to the associativity and commutativity of the operations ×,∪, the composition
operation ◦ also possesses these properties:

(G1 ◦G2) ◦G3 = G1 ◦ (G2 ◦G3);

G1 ◦G2 = G2 ◦G1.

It is evident that if conditions (3) and (4) are satisfied, then G1 ◦G2 = G1 ×G2.

Let us define a new algebra A2 = 〈G2,S2〉 with the signature S2 = {◦,×,+}, which, like the
algebra A1, forms a commutative semigroup under each operation.

5. THE OPERATION OF GRAPHOID FILTERING

After performing the binary operations of the signature S2 a new graphoid of the algebra A2

is obtained. The automaton corresponding to this graphoid may not satisfy the constraints for
the joint functioning of the components of the overall model because the resulting automaton may
contain invalid combinations of their states, considering the specific characteristics of the domain.
That is, conflict situations arise in the resulting automaton (it is assumed that the set of conflict
situations is defined by the decision-maker). As a result, there is a need to introduce a filtering
operation ∇, which allows excluding vertices of the graphoid that correspond to invalid states of
the automaton. These vertices will also be referred to as invalid.

It should be noted that in [12, 13], only the issues of finding and removing unreachable states of
automata were studied, which helps reduce the dimensionality of the problem, but may not meet
the requirements of the domain.

Let Ω1, . . . ,Ωn be the generators of the algebra A2, i.e., the graphoids from which, using the
operations signature S2 of the all other graphoids of the carrier G2 can be obtained.

Let us define the set Ψ = {Ψ1, . . . ,Ψk, . . . ,Ψr} of invalid vertices of some graphoid. Each ver-

tex Ψk corresponds to the set
{
q
lk1
Ωk1

, . . . , q
l|Ψk|
Ωk|Ψk|

}
of vertices, which are the generators of the alge-

bra A2.
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Let the graphoidH = (QH ,FH ,XH ,YH) be obtained by transforming the graphoidG1, . . . ,Gm∈G2

using the operations of the signature S2. Then, the set of all vertices of the graphoid H is as follows:

QH =
{
QG1 , . . . , QGm ,

{
QGij |QGij = QGi ×QGj ,∀i, j ∈ {1,m}, i �= j

}
, . . . ,{

QGi1,...,in
|QGi1,...,in

= QGi1
× . . .×QGin

,∀i1, . . . , in ∈ {1,m}, i1 �= . . . �= in
}}

.

Let us define the function

π(qH ,Ψk) =

{
1, if Ψk ⊆ qH

0, otherwise.

Then the vertex qH ∈ QH is invalid if:
r∑

k=1

π(qH ,Ψk) �= 0.

Let us denote as

ΞH =

{
qH ∈ QH |

r∑
k=1

π(qH ,Ψk) �= 0

}
a set of invalid vertexes.

For exclude invalid states, we introduce a unary filtering operation ∇.

The graphoid ∇ΞH
H is called the filtration of the graphoid H by the set ΞH if it is a subgraph

of the graphoid H with the set of vertices Q∇ΞH
H = QH \ ΞH .

Thus, the algebra A3 = 〈G3,S3〉 with the signature S3 = {∇, ◦,×,+} is obtained.

6. ALGORITHM FOR GRAPHOID SYNTHESIS OF A FINITE STATE MACHINE MODEL

To develop this algorithm, we first define the algebra of graphoids, whose signature contains
only the operations necessary to solve the problem of synthesizing graphoids for automaton models,
taking into account the features described above.

Consider automata functioning simultaneously, which are described by graphoids (1) and (2).
Their state transitions can occur either simultaneously or at different times. Therefore, the opera-
tion of the automata can be:

• Either synchronized, which in the synthesis process is described by:
— the operation ×, if they do not contain triggers that influence each other’s functioning;
— the operation ◦, if they contain triggers that influence each other’s functioning;

• or asynchronous, which is described by the operation +.

Both possibilities for the functioning of the automata must be taken into account during the
synthesis process. Based on this, it is necessary to combine the operations ◦,× and +. For this,
we introduce the union operation ∪ of graphoids.

Let the condition (5) hold for graphoids (1) and (2), and QG1 = QG2 , then the union ∪ of the
graphoids is called the graphoid

C = G1 ∪G2 = (QC , FC ,XC , YC),

where QC , FC ,XC , YC are defined by following formulas:

QC = QG1 = QG2 ;

FCqC = FG1qG1 ∪ FG2qG2 ;

XC = XG1 ∪XG2 ;

YC = YG1 ∪ YG2 .
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This operation has the following properties:

(G1 ∪G2) ∪G3 = G1 ∪ (G2 ∪G3) ;

G1 ∪G2 = G2 ∪G1.

Considering the properties (6) and (7) of the operations ◦,× and + introduced above, the synthe-
sis process of graphoids for automaton models can be carried out using the following combinations
of these operations:

G1 ⊗G2 = (G1 ×G2) ∪ (G1 +G2);

G1 �G2 = (G1 ◦G2) ∪ (G1 +G2).

The graphoids obtained after performing the operations ⊗ and � may correspond to automata
that contain unacceptable states. To exclude them, the filtration operation ∇ must be used.

The above leads to the conclusion that the algebra A = 〈G,S〉, where S = {∇,⊗,�}, can be
used for synthesizing graphoids of automaton models.

Now, let’s consider the algebraic properties of the operations in the signature S.
From the commutativity and associativity of the operations ◦,×,+,∪, it follows that the oper-

ations ⊗ and � are also commutative and associative. Therefore, the order in which the synthesis
of the overall model is carried out using these operations does not matter.

Let • denote one of the operations in the set {⊗,�}. Suppose the graphoids Gi1 , Gi2 , Gi3 , . . . , Gis

are obtained by transforming the graphoids G1, . . . , Gm ∈ G using operations from the signature S.
Then the following statement holds.

Proposition 2.

∇(Gi1 •Gi2 •Gi3 • . . . •Gis) = ∇
(
∇
(
. . .

(
∇
(
(∇Gi1) •Gi2

)
•Gi3

)
• . . .

)
•Gis

)
.

Proof. We will use the method of mathematical induction.

Let ΞGit
be the set of unacceptable vertices of the graphoid Git , and let Ξ contain all possible

unacceptable vertices of combinations of the graphoids Gi1 , Gi2 , Gi3 , . . . , Gis .
(1) Base case s = 2. We need to prove that ∇(Gi1 •Gi2) = ∇

(
(∇Gi1) •Gi2

)
.

The set of vertices ∇(Gi1 •Gi2) is QGi1
•Gi2

= Q̂Gi1
•Gi2

\ Ξ, and the set of vertices of

∇
(
(∇Gi1) •Gi2) is QGi1

•Gi2
=

(
(Q̂Gi1

\ ΞGi1
)× Q̂Gi2

)
\ Ξ.

Now, let us transform the last expression:

QGi1
•Gi2

=
((
Q̂Gi1

\ ΞGi1

)
× Q̂Gi2

)
\ Ξ =

((
Q̂Gi1

× Q̂Gi2

)
\
(
ΞGi1

× Q̂Gi2

))
\ Ξ. (8)

In the set ΞGi1
× Q̂Gi2

all vertices are unacceptable, so, ΞGi1
× Q̂Gi2

⊆ Ξ, and we can rewrite

the expression (6) as: (Q̂Gi1
× Q̂Gi2

) \ Ξ, which corresponds to ∇(Gi1 •Gi2).
(2) Assume that the statement is true for s = k We now need to prove that it holds for s = k+1.

We have:

∇(Gi1 •Gi2 •Gi3 • . . . •Gis •Gis+1)

= ∇
(
∇
(
∇
(
. . .

(
∇
(
∇(Gi1) •Gi2

)
•Gi3

)
• . . .

)
•Gis

)
•Gis+1

)
,

since the graphoids Gi1 , Gi2 , Gi3 , . . . , Gis are obtained by transformations using the op-
erations of the signature S, the expression Gi1 •Gi2 •Gi3 • . . . •Gis can be replaced by
the equivalent graphoid H = Gi1 •Gi2 •Gi3 • . . . •Gis . Thus, we obtain the expression
∇(Gi1 •Gi2 •Gi3 • . . . •Gis •Gis+1) is ∇(H •Gis+1). Therefore, it is necessary to show the
validity of the equality ∇(H •Gis+1) = ∇

(
(∇H) •Gis+1

)
, which was proven in part 1).
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Fig. 3. Algorithm for synthesizing graphoids of automaton models.

Thus, the algorithm for synthesizing graphoids from G is as shown in Fig. 3. Its correctness
follows from the algebraic properties of the operations of the signature S and the theorem proven
above.

7. NUMERICAL EXAMPLE

As an example, consider the process of access control to an emergency zone, the organization of
search and rescue operations, and the evacuation of people and material assets from this zone [10],
which involves the use of the following standard functional groups:

(1) Organization of access to the emergency zone, whose actions are modeled by automaton
A1〈

(
G1 = (QG1 , FG1 ,XG1 , YG1)

)
;

(2) Organization of the search for people and material assets to be evacuated, whose actions are
modeled by automaton A2〈

(
G2 = (QG2 , FG2 ,XG2 , YG2)

)
;

(3) Organization of evacuation to a safe area, whose actions are modeled by automaton A3〈
(
G3 =

(QG3 , FG3 ,XG3 , YG3)
)
.

During the development of the emergency situation, the listed functional groups can be in states
corresponding to the vertices indicated in table.

Description of the vertices of the graphoids corresponding to the states of the automata
A1〈G1, A2〈G2, A3〈G3, modeling the actions of functional groups

q1G1
Full perimeter control of the emergency zone

q2G1
Implementation of access control

q1G2
Waiting in the initial area

q2G2
Movement to the search area

q3G2
Searching for people and material valuables to be evacuated

q4G2
Escorting people and material valuables to the assembly evacuation point

q1G3
Waiting for the formation of the evacuation convoy

q2G3
Accounting for the injured and forming the evacuation convoy

q3G3
Movement to the safe zone
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Fig. 4. Graphoid G1.
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Fig. 5. Graphoid G2.
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Fig. 6. Graphoid G3.

The graphoids G1, G2, G3 of finite state machines A1, A2, A3 are shown in Figs. 4–6.

It is necessary to synthesize, using the developed algebra A a graphoid H, that defines the joint
activities of the functional groups. The analysis of the task revealed:

1) potential conflict situations and the determination of the set of unacceptable vertices

Ξ =
{{

q1G1
, q2G2

}
,
{
q2G1

, q1G2

}
,
{
q2G1

, q3G2

}
,
{
q2G1

, q4G2

}
,
{
q1G1

, q4G2
, q1G3

}
,
{
q1G1

, q4G2
, q3G3

}}
;

2) the need for automaton A3 to be triggered by automaton A2: if the output symbol of au-
tomaton A2 is y5G2

, then the input symbol of automaton A3 is x2G3
.

For example, the state corresponding to the vertex is a conflict state because the functional
group described by automaton A1, is advancing into the search area at the moment when the
functional group described by automaton A2, is performing territorial control.

We will describe the process of synthesizing the graphoid H in accordance with the algorithm
shown in Fig. 1.

In the first iteration, the synthesis of graphoids H and G2 is carried out:

It is assumed that H = G1 and YH = YG1 ;

Since there are no state triggers, as YH ∩XG2 = ∅, the operation H = H ⊗G2 is performed;
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11q 13q

3 14GT q 22q

11 11/x y

22 22/x y
22 24/x y15 15/x y

33 33/x y

34 35/x y

Fig. 7. Graphoid H = ∇(G1 ⊗G2).

111q 131q

441q

11 112G T

44 442G T

44 4/2G T

33 332G T

114q 134q

3 1/ 4xy q 444q

11 112G T

44 442G T

44 4/2G T15 152G T
33 332G T

3/ 352G T

113q 133q

443q

11 112G T

44 442G T

44 4/2G T

33 332G T

3
35 42 xT T

3 3
3 32x xG T

3 3
3 32x xG T

3 3
3 32x xG T

3 3
/ /2x xG T

3 3
/ /2x xG T

3 3
/ /2x xG T

Fig. 8. Graphoid = ∇(∇(G1 ⊗G2)�G3).

Invalid states, determined by the vertices {q1G1
, q2G2

}, {q2G1
, q1G2

}, {q2G1
, q3G2

}, {q2G1
, q4G2

} are ex-
cluded from graphoid H, i.e., the operation H = ∇H is performed. The resulting graphoid is shown
in Fig. 7, where the vertices qij = {qiG1

, qjG2
}, input symbols xij = {xiG1

, xjG2
} and output symbols

yij = {yiG1
, yjG2

} are defined.
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In the next iteration, the synthesis of graphoids H and G3 is performed:

Since YH ∩XG3 �= ∅ the operation H = H �G3 is performed;

Invalid vertices {q1G1
, q4G2

, q1G3
}, {q1G1

, q4G2
, q3G3

} are excluded from graphoid H, i.e., the oper-

ation H = ∇H, is performed. The resulting graphoid is shown in Fig. 8, with vertices qijk =
{qiG1

, qjG2
, qkG3

}.
Thus, the graphoid H corresponds to an automaton that describes the parallel synchronous and

asynchronous functioning of automata A1, A2, as well as the initialization of state transitions of
automaton A3.

In the resulting graphoidH, all interrelated actions of the three functional groups are considered.
Their activities are directed at controlling access to the emergency zone, organizing the search for
victims, and evacuating people and material valuables from the zone.

8. CONCLUSION

The article presents an algebra of graphoids of automata, which allows synthesizing a graphoid
for the general model of automaton functioning. In constructing this algebra, operations on au-
tomata were partially transferred to the graphoids of these automata, and operations were intro-
duced to account for additional domain-specific requirements. An algorithm for synthesizing the
graphoids of automata based on this algebra has been developed, which allows constructing a gen-
eralized model of object functioning independently of the sequence in which they are connected,
due to the commutativity of the operations. A numerical example of synthesizing the graphoid of
an automaton is provided, describing the interrelated actions of three functional groups used in the
event of an emergency. These functional groups carry out control of access to the emergency zone,
organize the search for victims, and evacuate people and material valuables from the zone. As a
result, a mathematical apparatus has been developed, enabling the modeling of joint actions of the
functional groups involved in emergency response. This mathematical apparatus can later be used
in models for assessing the effectiveness of functional group actions and optimizing the selection of
their composition and tactics, by populating it with the contents of the input and output symbols
of the automata.
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